MIR Coding Specifications

The program for our robot is reasonably large. It is approximately 20,000 lines of code. This code has been divided into many different files, 106 files to be exact. Different people wrote different parts. Jason Abbett, Michael Hall, Jeff Croxell and myself wrote various portions of the code. Some were completely written by one person and others were written by everyone.

The program starts with the main.cxx file. It contains the menu system that calls many other functions (programs) located in other files. Thus, many files are included at the start of the file so that any of them can be accessed with the main menu. The main function also checks to see if the latest hardware bit logic is detected. This makes sure that the correct version of the hardware logic is loaded in for the program to work. Otherwise, certain hardware devices may not work, since they had not been implemented in earlier versions of the logic.

The main menu has five major menu options. Of these, only three are of major importance, the “IEEE 2006 Competition option”, the "Robot Systems" option, and the “Development Programs” option. The other two options just go to small tests, “Timings” goes to a timing test to show the status of the hardware timing logic and “Misc Programs” goes to a multiply test to show the status and performance of the hardware multiplication.

The “IEEE 2006 Competition” option should contain the program that would be executed at the competition, but instead it only contains test programs for the “find can” module, since time constraints prevented the relocation of the actual competition program. Thus, this option allows easy testing of the routine that gets executed within rooms. The “Scan for Can” option executes the full routine, which scans for the can with the sonar, centers on it, checks its color, and grabs it. The “Assume Can In Front” option executes a limited version of the routine, which skips the scanning and centering, but still checks the color and grabs the can.

The “Robot Systems” option contains the bulk of the hardware testing programs. This allows easy testing of every piece of electronic hardware on the robot, displays status, and allows user control of the parts. Inputs, such as sonar sensors, will display their readings to the screen in an easy to understand format. Thus, the sonar sensor test program outputs the three sonar readings to the screen in centimeters. Outputs, such as the robotic arm, will display a control menu allowing the user to choose what he/she wants the output device to do. Thus, the robotic arm test allows the user to select whether he/she wants the arm to the grabbing position, the idle position, or close the claw.

The “Development Programs” option contains the higher-level algorithm tests, including the sensor fusion test. Only two options in this menu actually work, since the rest have been archived since they were not effective enough. The “Grab Can Test” option executes the testing program for the can color identification. Initially, it was a testing program to grab the can, but it degraded to this due to camera difficulties. The “Sensor Fusion Test” option actually executes the main program that was used at the competition. This was to be moved to within the “IEEE 2006 Competition” main menu option, but it was not due to time constraints and higher priorities. The “Sensor Fusion Test” actually combines the inputs, outputs, and high level modules to allow the robot to complete the competition objective.

When executing the “Sensor Fusion Test”, the robot should to be placed in the starting room, specified as Room 1 by IEEE, and placed centered facing the exit on the black line exiting the room. It will start using the “line following” routine to get to the room across the hall to the closest incoming room. Then it will call the “grab can” routine to find, identify, and grab the can. The “grab can” routine will then turn around to face the exit of the room and return the can’s color. Now the “line following” routine will regain control and drive the robot to the correct outgoing room based on the color identified. If it needs to make any turns, it stops following the lines and drives approximately half a foot to the center of the intersection and turns 90 degrees using the “navigation system” routine. Then it drives another half a foot to leave the intersection and get back on a line. It stops when the last can has been placed in the circle.

The “line following” routine is largely reactive, based on the eight possible states of the three light sensors. Basically, it turns the robot towards the line if black is on one side, drives forwards if black is centered, or spins left or right on all white depending on which sensor last read black. This method does allow it to get lost at times, but it is simple and quick.

The “navigation system” routine is somewhat deliberative, calculating the power to send to the motors to drive the robot to the given coordinates. It calculates a line from the robot’s position to the destination and uses proportional integral derivative (PID) control to determine the robot’s current error from that line. Then it adjusts the power of the motors to gradually correct the error and get back on the line, ultimately arriving at the destination. It is complicated and hard to debug, but it is effective.

The “grab can” routine is also somewhat deliberative, calculating the closest sonar reading and centering on it using the “navigation system”. It starts by telling the “navigation system” to turn the robot left 45 degrees, then tells it to gradually turn right 90 degrees. During the second turn, it sends out 16 sonar pings and saves the angle of the closest object. Then it tells the “navigation system” to face this angle. Next it drives forward until it the sonar reads the object within an inch or so and takes a picture with the camera, identifying the can’s color based on which color the picture’s average color is closest to. Then it drives backward until the sonar reads the object between about eight and nine inches. It tells the “robotic arm” routine to move the arm to the grabbing position, close the claw, and move the arm to the carrying position. Finally, it tells the “navigation system” to return to the point it entered the room, facing the opposite direction. It is also reasonably complicated and a little hard to debug, but it is also effective.

Devon Berry

5/3/06

